1 The point $\mathrm{R}(6,-3)$ is on the curve $y=\mathrm{f}(x)$.
(i) Find the coordinates of the image of R when the curve is transformed to $y=\frac{1}{2} \mathrm{f}(x)$.
(ii) Find the coordinates of the image of R when the curve is transformed to $y=\mathrm{f}(3 x)$.

2 Fig. 8 shows the graph of $y=\mathrm{g}(x)$.

Fig. 8
Draw the graph of
(i) $y=\mathrm{g}(2 x)$,
(ii) $y=3 \mathrm{~g}(x)$.

3 The point $\mathrm{P}(6,3)$ lies on the curve $y=\mathrm{f}(x)$. State the coordinates of the image of P after the transformation which maps $y=\mathrm{f}(x)$ onto
(i) $y=3 \mathrm{f}(x)$, [2]
(ii) $y=\mathrm{f}(4 x)$.

4 In this question, $\mathrm{f}(x)=x^{2}-5 x$. Fig. 4 shows a sketch of the graph of $y=\mathrm{f}(x)$.

Fig. 4

On separate diagrams, sketch the curves $y=\mathrm{f}(2 x)$ and $y=3 \mathrm{f}(x)$, labelling the coordinates of their intersections with the axes and their turning points.

5 State the transformation which maps the graph of $y=x^{2}+5$ onto the graph of $y=3 x^{2}+15$.

6

Fig. 3
Fig. 3 shows sketches of three graphs, A, B and C. The equation of graph A is $y=\mathrm{f}(x)$.
State the equation of
(i) graph B ,
(ii) graph C .

7
(i) Solve the equation $\cos x=0.4$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(ii) Describe the transformation which maps the graph of $y=\cos x$ onto the graph of $y=\cos 2 x$.

8 (i) The point $\mathrm{P}(4,-2)$ lies on the curve $y=\mathrm{f}(x)$. Find the coordinates of the image of P when the curve is transformed to $y=\mathrm{f}(5 x)$.
(ii) Describe fully a single transformation which maps the curve $y=\sin x^{\circ}$ onto the curve $y=\sin (x-90)^{\circ}$.

9 Figs. 5.1 and 5.2 show the graph of $y=\sin x$ for values of x from 0° to 360° and two transformations of this graph. State the equation of each graph after it has been transformed.
(i)

Fig. 5.1
(ii)

Fig. 5.2

10 The curve $y=\mathrm{f}(x)$ has a minimum point at $(3,5)$.
State the coordinates of the corresponding minimum point on the graph of
(i) $y=3 \mathrm{f}(x)$,
(ii) $y=\mathrm{f}(2 x)$.

Fig. 5

Fig. 5 shows a sketch of the graph of $y=\mathrm{f}(x)$. On separate diagrams, sketch the graphs of the following, showing clearly the coordinates of the points corresponding to P, Q and R .
(i) $y=\mathrm{f}(2 x)$
(ii) $y=\frac{1}{4} \mathrm{f}(x)$

12 Answer this question on the insert provided.

Fig. 5 shows the graph of $y=\mathrm{f}(x)$.

Fig. 5

On the insert, draw the graph of
(i) $y=\mathrm{f}(x-2)$,
(ii) $y=3 \mathrm{f}(x)$.

Fig. 4

Fig. 4 shows a sketch of the graph of $y=\mathrm{f}(x)$. On separate diagrams, sketch the graphs of the following, showing clearly the coordinates of the points corresponding to A, B and C .
(i) $y=2 \mathrm{f}(x)$
(ii) $y=\mathrm{f}(x+3)$

14 (i) On the same axes, sketch the graphs of $y=\cos x$ and $y=\cos 2 x$ for values of x from 0 to 2π.[3]
(ii) Describe the transformation which maps the graph of $y=\cos x$ onto the graph of $y=3 \cos x$.

