- 1 The point $\mathbb{R}(6, -3)$ is on the curve y = f(x).
 - (i) Find the coordinates of the image of R when the curve is transformed to $y = \frac{1}{2}f(x)$. [2]
 - (ii) Find the coordinates of the image of R when the curve is transformed to y = f(3x). [2]

2 Fig. 8 shows the graph of y = g(x).

Fig. 8

Draw the graph of

(i) $y = g(2x)$,	[2]
(ii) $y = 3g(x)$.	[2]

3 The point P (6, 3) lies on the curve y = f(x). State the coordinates of the image of P after the transformation which maps y = f(x) onto

(i)
$$y = 3f(x)$$
, [2]

(ii)
$$y = f(4x)$$
. [2]

4 In this question, $f(x) = x^2 - 5x$. Fig. 4 shows a sketch of the graph of y = f(x).

On separate diagrams, sketch the curves y = f(2x) and y = 3f(x), labelling the coordinates of their intersections with the axes and their turning points. [4]

5 State the transformation which maps the graph of $y = x^2 + 5$ onto the graph of $y = 3x^2 + 15$. [2]

Fig. 3 shows sketches of three graphs, A, B and C. The equation of graph A is y = f(x). State the equation of

(i) graph B,	[2]
--------------	-----

(ii) graph C.

7 (i) Solve the equation $\cos x = 0.4$ for $0^{\circ} \le x \le 360^{\circ}$.

(ii) Describe the transformation which maps the graph of $y = \cos x$ onto the graph of $y = \cos 2x$.

[2]

- 8 (i) The point P (4, -2) lies on the curve y = f(x). Find the coordinates of the image of P when the curve is transformed to y = f(5x). [2]
 - (ii) Describe fully a single transformation which maps the curve $y = \sin x^{\circ}$ onto the curve $y = \sin(x 90)^{\circ}$. [2]
- 9 Figs. 5.1 and 5.2 show the graph of $y = \sin x$ for values of x from 0° to 360° and two transformations of this graph. State the equation of each graph after it has been transformed.

Fig. 5.1

(ii)

(i)

Fig. 5.2

[1]

10 The curve y = f(x) has a minimum point at (3, 5).

State the coordinates of the corresponding minimum point on the graph of

(i) $y = 3f(x)$,	[2]
(ii) $y = f(2x)$.	[2]

Fig. 5 shows a sketch of the graph of y = f(x). On separate diagrams, sketch the graphs of the following, showing clearly the coordinates of the points corresponding to P, Q and R.

(i)	i) $y = f(2x)$	[2]

(ii)
$$y = \frac{1}{4}f(x)$$
 [2]

Answer this question on the insert provided. 12

Fig. 5 shows the graph of y = f(x).

Fig. 5

On the insert, draw the graph of

(i)
$$y = f(x-2)$$
, [2]
(ii) $y = 3f(x)$. [2]

(ii)
$$y = 3f(x)$$
.

Fig. 4 shows a sketch of the graph of y = f(x). On separate diagrams, sketch the graphs of the following, showing clearly the coordinates of the points corresponding to A, B and C.

(i)
$$y = 2f(x)$$
 [2]

(ii)
$$y = f(x+3)$$
 [2]

14 (i) On the same axes, sketch the graphs of $y = \cos x$ and $y = \cos 2x$ for values of x from 0 to 2π . [3]

(ii) Describe the transformation which maps the graph of $y = \cos x$ onto the graph of $y = 3 \cos x$. [2]